EU Emissions Trading Scheme Monitoring, Reporting and Verification for Offshore Operators

> 3rd December 2003 Paula Murphy, DNV

Contents

- 1. General reporting principles
- 2. Determination of emissions
- 3. Determination of CV and factors
- 4. Permissible uncertainty
- 5. QA/QC requirements
- 6. Managing reporting risks
- 7. Lessons from UK ETS verifiers perspective

Reporting Principles

- Completeness
- Accuracy
- Consistency
- Transparency
- Cost effectiveness

General Combustion Activities

Based on Draft M&R Guidelines (Rev 24/11/03)

Activity Data

Fuel Consumed:

- 1. Metered consumption, uncertainty +/- 7%
- 2. a) Metered consumption, uncertainty +/- 5%
 - b) Metered purchase, uncertainty +/- 4.5%, mass balance
- 3. a) Metered consumption, uncertainty +/- 2.5%
 b) Metered purchase, uncertainty +/- 2%, mass balance
- 4. a) Metered consumption, uncertainty +/- 1.5%
 b) Metered purchase, uncertainty +/- 1%, mass balance

Net CV:

- 1. Country specific net CV from IPCC
- 2. Latest country specific net CV
- 3. Measured for each batch of fuel

General Combustion Activities

Based on Draft M&R Guidelines (Rev 24/11/03)

Emission Factor

- 1. Reference factor from Section 8 of Annex 1
- 2. a) Latest country specific factorb) Density measurement and empirical correlation
- 3. Calculated from representative carbon content

Oxidation Factor

- 1. 0.99 for solid fuels and 0.995 for all other fuels
- 2. Activity specific factors for solid fuels based on carbon content of uncombusted products.

Flaring (likely to be excluded?)

Based on Draft M&R Guidelines (Rev 24/11/03)

Includes routine, operational and emergency flaring

Activity Data

Flared gas:

- 1. Metered volumes, uncertainty +/- 12.5%
- 2. Metered volumes, uncertainty +/- 7.5%
- 3. Metered volumes, uncertainty +/- 2%

Emission Factor

- 1. Reference factor (assumes pure butane)
- 2. Calculated from representative carbon content

Oxidation Factor

1. Rate of 0.995

Application of Tiers

Based on Draft M&R Guidelines (Rev 24/11/03)

	Activity Data			Net Calorific Value			Emission Factor			Oxidation Factor		
Annex/Activity	Α	В	С	Α	В	С	Α	В	С	Α	В	С
II: Combustion												
Combustion (gaseous, liquid)	2a/2b	3a/3b	4a/4b	2	2	3	2a/2b	2a/2b	3	1	1	1
Combustion (solid)	1	2a/2b	3a/3b	2	3	3	2a/2b	3	3	1	2	2
Flares	2	3	3	n.a.	n.a.	n.a.	1	2	2	1	1	1
Scrubbing Carbonate	1	1	1	n.a.	n.a.	n.a.	1	1	1	n.a.	n.a.	n.a.
Gypsum	1	1	1	n.a.	n.a.	n.a.	1	1	1	n.a.	n.a.	n.a.

<u>Column A: total annual emissions<=50 ktonnes</u> Column B: 50 ktonnes<total annual emissions<=500 ktonnes

Column C: total annual emissions>500 ktonnes

Determination of CV and Factors

Based on Draft M&R Guidelines (Rev 24/11/03)

- CEN/ISO/National standards shall be used in determining net CV and carbon content.
- Laboratories shall be accredited to EN ISO 17025 (General requirements for the competence of testing and calibration laboratories)
- Sampling needs to be representative for the fuel type
- Document the procedure for determining the emission factors and retain records of underlying data
- Procedures are agreed with the CA and form part of the permit.

'Permissible uncertainty'

Based on Draft M&R Guidelines (Rev 24/11/03)

- 95% confidence interval around the measured value
- Includes specified uncertainty for equipment, associated calibration and additional uncertainty around how the equipment is used in practice
- Uncertainty is addressed within the permit based on the combination of tiers which are authorised by the CA
- Remaining uncertainties around emissions data will be managed via the QA/QC process, which will subject to verification.

QA/QC Requirements

Establish a data management system (can be part of EMAS/ ISO system)

- Map out information flow (from meter points to final emissions)
- Use simplified fuel flow diagrams and record the location/ reference for meter points
- Determine/document control measures for each step in the data flow (e.g. planned maintenance, checks/reviews)
- Assign/document responsibilities for each step in the data flow.
- Document the justification for assumptions

Managing Reporting Risks

Risks:	Controls:					
 Reliability of metering systems 	 Defined planned maintenance requirements 					
 Non-transparent underlying data sources 	 Clear documentation/ understanding of information sources and assumptions 					
 Representativeness of emission factors 	 Defined process for assessing/updating factors and retaining supporting information 					
 Significant manual transfer of data 	 Secondary cross checks/ rigorous data review processes 					

Lessons from the UK ETS

- A two staged verification process relieves the pressure at year end
- Good data management systems reduce the demands on time and personnel
- Clear communication of the verifiers expectations and requirements
- Good preparation on both sides leads to a more efficient verification process

Where to now ?

- Permit applications
- Establish systems and procedures to monitor, measure, manage data and report
- External review by verifier of above systems and procedures in 2004 to ensure suitability of approach
- Address gaps/issues as a result of this review
- First compliance period in 2005 including mid term verification and final verification at year end 2005 or early 2006

